
Evaluating Performance of OpenMP and
MPI on the SGI Origin 2000 With

Benchmarks of Realistic Problem Sizes

by Csaba K. Zoltani, Punyam Satya-narayana,
and Dixie Hisley

Approved for public release; distribution is unlimited.

20001030 043

The findings in this report are not to be construed as an official
Department of the Army position unless so designated by other
authorized documents.

Citation of manufacturer’s or trade names does not constitute an
official endorsement or approval of the use thereof.

Destroy this report when it is no longer needed. Do not return
it to the originator.

. I

Abstract

Six application benchmarks, including four numerical aerodynamic simulation (NAS) codes,
provided by H. Jin and J. Wu, were previously parallelized using OpenMP and message-passing
interface (MPI) and run on a 128-processor Silicon Graphics Inc. (SGI) Origin 2000. Detailed
profile data were collected to understand the factors causing imperfect scalability. The results
show that load imbalance and cost of remote accesses are the main factors in limited speedup of
the OpenMP versions, whereas communication costs are the single major factor in the
performance of the MPI versions.

.

,

ii

.

Acknowledgments

The authors wish to express their thanks to Haoqiang Jin and Jerry Wu for access to the beta

version of the updated numerical aerodynamics simulation (NAS) benchmarks and for

generously sharing their experience. Special thanks go to Gagan Agrawal and Lori Pollock of

the University of Delaware for their inputs. This work was supported in part by the Department

of Defense (DOD) High-Performance Computer Modernization Program.

. . .
111

I

,

,

INTENTIONALLYLEFTBLANK.

iv

Table of Contents

I .
-

Page

Acknowledgments .
. . .
ill

List of Figures . vii

.

List of Tables . vii

1. Introduction . 1

2. Programming Environment . 2

2.1 origin 2ooo ... 2

2.2 Parallel Programming Environments .. 2

2.3 Benchmarks and Problem Sizes .. 3

3. Experimental Results ..f... 5

3.1 Comparing OpenMP and MPI Performance ... 5

3.2 Communication Cost Issues .. 10

3.3 OpenMP Implementation of Irregular CFD Codes ... 10

4.

5. References . 13

Conclusions . 12

Distribution List . 15

Report Documentation Page . 17

V

INTENTIONALLY LEFT BLANK.

Vi

List of Figures

Figure

1.

2.

3.

4.

5.

6.

Timing for Ml?1 Version of CG for Classes B and C, 12k Chip .

Scalability of OpenMP and MPI Versions of CG and LU .

Scalability of OpenMP and MPI Versions of SP and BT .

Max, Average, and Min MFlops Across All Processors for OpenMp and
MPI for CG .

Max, Average, and Min MFlops Across All Processors for OpenMP and
MPI for BT .

Performance of OpenMp and LES and IRREG With the RlOk Chip .

List of Tables

Table

1. Using Event Counts for Performance Problem Identification .

2. NPB Problem Sizes (Number of Elements) .

vii

Page

4

5

6

8

8

11

m

3

4

~TENTIONALLY LEFT BLANK.

. . .
Vlll

1. Introduction

Over the last several years, several portable mechanisms for developing parallel programs

have been standardized. This set includes relatively low-level libraries like the message-passing

interface (MPI), parallelization directives like OpenMP, and higher level languages including

high-performance Fortran (HPF). Unlike the use of vendor-specific libraries and compiler

directives, these libraries and language extensions are supported on a large number of systems.

At the same time, distributed shared memory (DSM) systems are emerging as an important class

of parallel machines. This includes both the hardware-DSM systems like the Silicon Graphics

Inc. (SGI) Origin 2000 and software-DSM systems like Treadmarks. The main advantage of

such systems is that the programmers have the option of programming them using either a shared

memory or message-passing paradigm or both.

In this report, an experimental study is presented to answer the following question: What are

the main obstacles (among factors like communication costs, false sharing, and synchronization

costs) in achieving scalable performance through each of the paradigms? Though answers have

been attempted, the issue remains contentious [11. Six benchmark programs are used, including

four numerical aerodynamics simulation. (NAS) codes and two irregular computational fluid

dynamics (CFD) codes. The performance of 0penM.P and MPI versions of these programs is

examined on a 128-processor Origin 2000. Besides comparing the scalability of these versions,

hardware counter-based performance data are used to understand the difference between the

performance of different versions and the reasons for imperfect scalability.

In section 2, the programming environments and benchmarks used for the experimental study

are explained. The results from the experiments are presented and analyzed in section 3, and the

conclusions are presented in section 4.

2. Programming Environment

2.1 Origin 2000. The Origin 2000 is a DSM architecture. The machine utilized for this

study is part of the U.S. Army Research Laboratory’s (ARL) Major Shared Resource Center

(MSRC) supercomputing assets. The largest configuration available is comprised of 128 nodes.

Each processor has 1 GB of local memory. Each processor is a million instructions per second

(MIPS) R12000 (R12k) 64-bit central processing unit (CPU) running at 300 MHz with two

32-kB primary caches and one &MB secondary cache. The older RlOOOO (RlOk) 64-bit chips

ran at 195 MHz, with two 32-kB primary caches and one 4-MB secondary cache.

An interesting aspect of the Origin 2000 system is its capability for reporting detailed profile

information to the application programmers. The MIPS R12k and the older RlOk are two of the

very few systems in which the hardware counters are made visible to the end-users of the

machine. A small set of events is monitored by the hardware counters, including cache misses,

memory coherence operations, floating-point operations, and branch n&predictions. Because

this monitoring is done in hardware rather than software, it is possible to extract detailed

information about the state of the system without affecting the behavior of the program being

monitored.

In this study, profiling data are collected by running the codes with perfex, a profiling tool

that reports a count for the 32 countable event types, with no modifications to the targeted

program and with only a minimal effect on its execution time. Focus was on the subset of event

counts that are indicative of specific performance inhibitors to scalability. Table 1 shows the

performance inhibitors that were examined and the corresponding event counts that were used to

evaluate those potential problems.

2.2 Parallel Programming Environments. This study concentrated on using GpenMP as

the mechanism for shared-memory programmin g. The Origin 2000 can also be programmed as a

message-passing machine using MPI, which, like OpenMP, is portable across a number

2

Table 1. Using Event Counts for Performance Problem Identification

Performance Problem Event Count

Load Imbalance Number of floating-point operations issued per process is not
comparable.

Excessive Synchronization Number of store conditionals is high.
False Sharing Number of store exclusives to a shared block is high.
Cache Unfriendly Ll and L2 cache misses are high.

of platforms. MipsPro 7.2.1 compiler was used, and the applications were compiled with I77

using aggressive optimizations (-03 flag).

2.3 Benchmarks and Problem Sizes. This study of OpenMP is focused on four of the NAS

Parallel Benchmarks (NPBs), which are most relevant to the Army’s applications, and two

additional benchmarks, called IRREG and LES. The NPB set was developed by the NAS

Program at NASA Ames Research Center for the performance evaluation of parallel computing

systems [2]. NPBs mimic the computation and data movement characteristics of large-scale

CFD applications. This study focused on three simulated application codes (LU solver [Lu], SP,

and block tridiagonal [BTJ), and one kernel (conjugate gradient [CG]).

The assumption is that MPI can give the run with the least amount of computing time

requirement. The NAS-optimized MPI version of the four kernels tested was then the basis for

comparison. In this study, MPI implementations of the benchmarks were obtained from the

NPB 2.3 NAS website [3]. The rationale behind the PBN versions given by the working team is

to provide the community with an optimized version of NPB 2.3-serial and a sample OpenMP

implementation. The NPB and PBN versions specify three problem sizes for the benchmarks.

This report focuses on the Class B problem sizes, as they are the closest in size to realistic

problem sizes, as defined by the applications commonly run at ARL. Table 2 shows the problem

sizes for Class A, Class B, and Class C for each benchmark. A comparison in processing times

between Class B and C is given in Figure 1.

3

Table 2. NPB Problem Sizes (Number of Elements)

Benchmark Code Class A Class B Class C

BT 643 1o23 1 623

LU 643 1o23 1623
Pentadiagonal Solver 643 1o23 1623
CG 12.000 75.000 150.000

.._ ._...... _..._ _...... _ .,e...... i._,.l.._..__.+, ._._

.._. _..._._ _ _._.._ _._.,_ I......;..;..l._I

* WI-ClcaSB :::
A WI-assc

._ ._

Figure 1. Timing for MPI Version of CG for Classes B and C, 12k Chip.

Another benchmark that has been focused on is the large eddy simulation (LES) [4]. LES

can be used to characterize turbulent flow, where large-length scales signify the domain size and

small-length scales represent dissipative eddies. Although small scales are modeled due to their

isotropic nature, high-performance computing (HPC) resources are required to capture the large

energy-carrying length scales. In this report, a vectorized simulation code is optimized and

parallelized for Origin 2000 performance. A realistic simulation of flow past a backward-facing

step with a problem size of 32 x 32 x 32 is used to study scaling behavior. Periodic boundary

conditions are applied in the stream-wise and span-wise directions.

The second non-NAS benchmark being examined is IRREG [5]. IRREG is abstracted from a

CFD application that uses unstructured meshes to model a physical problem. The mesh is

4

I

.

.

represented by nodes, edges that connect two nodes, and faces that connect three or four nodes.

For the realistic submarine mesh used in these benchmark runs, the number of nodes, edges, and

faces were 92,564,623,003, and 504,947, respectively.

3. Experimental Results

In this section, a comparison of the performance of OpenMP and MPI versions of four NAS

codes and two irregular CFD codes using OpenMP is presented.

3.1 Comparing OpenMP and MPI Performance. The performance for OpenMP and MPI

versions of CG, LU, SP, and BT are shown in Figures 2 and 3. The plots show wall-clock time

as a function of the number of processors. In general, two observations can be made from these

four plots.

Figure 2. Scalability of OpenMP and MPI Versions of CG and LU.

Reasonably good scalability is achieved when up to 64 processors for all of the 8 programs

(2 versions for each of 4 benchmarks) are used. The speedup starts leveling off for configurations

beyond 64 processors, which shows that problem sizes in NAS Class B data sets are not suitable

for parallelization on a very large number of processors. For three of the four applications, MPI

5

NunberofPmceoKws Nur&r~Pmca-

Figure 3. Scalability of OpenMP and MPI Versions of SP and BT.

achieves better performance than the OpenMP versions. The MPI versions are significantly

faster for LU and CG, slightly better on large configurations for SP, and slightly slower on BT.

Of this set of benchmarks, using the RlOk chip, the poorest speedups are achieved for CG.

On 128 processors, the OpenNIP version achieves a speedup of 14. A slightly higher speedup of

15 is achieved at the 64processor configuration. The performance of the MPI version of CG is

significantly better on 16, 32, 64, and 128 processors. On both the 64 and 128-processor

configurations, the MPI version achieves a speedup of 43. For LU, OpenMP scales reasonably

well until 64 processors, achieving a speedup of 32. The MPI version has significantly better

speedup again, achieving a factor of 80 on 128 processors. For BT, OpenMP achieves a speedup

of nearly 50 on 128 processors. The speedup of the MPI version is only 30. It should be noted

that the l-processor version of MPI performs much worse as compared to the OpenMP

sequential version of this code. The results from MPI and OpenMP are the closest in the case of

SP. Speedup of nearly 50 is achieved on 121 processors for both the versions.*

How profiling data from perfex can be used to determine the reasons for imperfect scalability

and the differences in performance of OpenMP and MPI versions of the programs is now

l This code was executed on 121 processors because it required a square number of processors.

6

discussed. For a shared-memory program run on a DSM architecture, the following factors

usually contribute to a lower-than-ideal speedup: load imbalance, which implies that the work in

parallelized loops is not evenly distributed among the processors, and synchronization costs,

which denote the time spent by the processors in coordinating the progress of the computation

among themselves. False sharing occurs when two or more processors access different variables

that happen to be colocated on the same cache block, with at least one of the accesses being a

write. Once the write occurs, the entire cache line is invalidated to other processors. Remote

accesses indicate frequent references to off-processor data, which are expensive compared to

references to local data.

For the message-passing versions, the two common causes of imperfect speedup are

communication costs and load imbalance. Since single-program, multiple-data (SPMD) versions

of programs are run and there is no shared-memory support, false sharing and synchronization

costs do not occur. For each of the eight programs in which scalability numbers have been

presented, hardware counter data obtained from perfex were analyzed. For all GpenMP

programs, the event counts and typical times obtained for synchronization and false sharing were

extremely low (less than 3 s), even for the highest number of processors used. In general, a good

level of cache friendliness was seen for all programs except CG. Cache friendliness was

examined by looking at the average Ll and LZ cache hit rates returned by perfex. L2 cache hit

rates were consistently higher than 0.9 for each of the eight programs, and Ll cache hit rates

were also greater than 0.9 for all programs except CG. CG is an irregular code; therefore, poor

Ll locality is achieved. The load imbalance issue was examined by looking at the number of

floating-point operations performed over different processors in each run. A load-balanced

program will have very similar numbers for the number of floating-point operations performed

across all processors. Figure 4 shows the same data for OpenMP and MPI versions of CG.

Detailed data from LU and SP are not presented here, but trends are explained later. Figure 5

shows the minimum, maximum, and average number of cycles spent on floating-point operations

across all processors on the GpenMP and MPI versions of BT. The increase in range with an

increasing number of processors suggests a problem with load balancing.

7

mow CC-wl

Number of Processors

Jo-
; i;,; : ‘::

; : i/.j
_ _.r’.._ ;._._.+..+,+ _ ..,,.,,,,. _.,,* .,.... . ..L ,..... ;.,,_*,_; 1., ._..._ _

.

Figure 4. Max, Average, and Min MFlops Across All Processors for OpenMP and MPI for
CG.

Number ii Prow-

Figure 5. Max, Average, and Min MFlops Across All Processors for OpenMP and MPI for _
BT.

The difference in the number of floating-point operations between different processors

explains the limited speedup (50 times on 128 processors) of the OpenMP version of BT. The

results are very different from the WI version of the same code. For the OpenMP version, the

8

load is evenly balanced between different processors on ail processor configurations.

Interestingly, the GpenMP version gives overall better performance than the MPI version of BT.

A possible explanation for poor performance of the MPI version is the high communication

costs.

The performance of the OpenMP version can be further improved by better work

distribution. The program typically has nested loops where the number of iterations across each

dimension is 102 (for Class B). The loop-level parallelized Openh4P version achieves

parallelism across only a single dimension, so there is no way of using more than 102 processors.

Possibly, by using additional directives or by using SPMD-style OpenMP parallelism, the

performance of the GpenMP version of BT can be enhanced.

Similar trends are seen from CG. Excellent load balance is demonstrated by the MPI

version, leading to good performance. Load imbalance can be seen for the OpenMP version,

though it is not as severe as in the case of BT. Because of the irregular accesses in this code, the

high cost of frequent nonlocal references is likely to be another important factor behind limited

speedup. Unfortunately, perfex does not provide a mechanism for accurately measuring the

number of nonlocal references. Also, remote references can be aggregated in message-passing

versions, which is not possible in a shared-memory version.

In the case of SP, the OpenMP version achieves good load balance on 100 processors. The

number of floating-point operations performed by each processor only ranges from 21.21 x 10%

to 18.81 x 106/s. However, on 121 processors, some of the processors do not get any work, for

similar reasons as BT. Good load balance for the GpenMP version explains why the

performance of the GpenMP and MPI versions is very similar.

With LU, significant load imbalance is observed with GpenMP. On 64 processors, the

number of floating-point operations performed by each processor ranges from 29.63 x 10% to

14.03 x 10%. The load imbalance for the OpenMP version explains the difference in the

performance of OpenMP and MPI versions.

9

3.2 Communication Cost Issues. The performance of the benchmark BT under MPI lagged

under OpenMP (see Figure 3). To understand the issues involved, VAMPlR and

VAMPIRTRACE (parallel processing tools from Pallas GmbH) were run. The tools give a

breakdown of time spent for different tasks, including MPI, and also identify load imbalances.

Runs were made with 16, 36, and 64 processors. In the latter, 65% of the total processing time

was spent on MPI. The MPI runs also showed that load imbalances were present (i.e., only 9 of

the processors in the 64 processor case were actually 50% occupied by the application, while in

17 of the processors, this figure was less than 25%). Improving MPI processing is feasible, but

was not attempted here.

3.3 OpenMP Implementation of Irregular CFD Codes. Both of the non-NAS

benchmarks, LES and IRREG, were parallelized using the SPMD style of OpenMP that relies

heavily on domain decomposition. While domain decomposition can result in a coarse-grain

program exhibiting good scalability, it does transfer the responsibility of decomposition from the

compiler to the programmer. Once the problem domain is decomposed, the same sequential

algorithm is followed but is modified to handle the multiple subdomains. The program is

replicated on each thread but has different extents for the subdomains. Also, data that are local

to a subdomain (not shared globally) are specified as private or thread private. Thread private is

used for subdomain data that need file scope or are used in common blocks. Also, message

passing is replaced by shared data that can be read by any thread.

For LES, initialization of the data is parallelized using one parallel region for better data

locality among active processors. The main computational kernel is embedded in the

time-advancing loop. The time loop is treated sequentially, and the kernel itself is parallelized

using another parallel region. In this parallel region, the 32 x 32 x 32 mesh is blocked in the

z-direction and each block is tasked to a different processor.

The IRREG code contains a series of loops that iterate over nodes, edges, and faces. The

loops over edges and faces involve indirect accesses to memory locations, which are difficult to

analyze and parallelize in a loop-level sense. However, a parallel version of the code can be

10

.

accomplished by partitioning the nodes among the processors. The edges and faces are assigned

to the processor that owns a majority of the corresponding nodes. The recursive coordinate

bisection (RCB) partitioner used in the code does not optimally minimize the number of cut

edges (communication effort) but does attempt to reduce the amount of communication and load

balance the computational work. The performance of LES and IRREG is shown in Figure 6. A

speedup of 5.1 is obtained on eight processors. In LES, the matrix solver, the most expensive

module, is made cache-friendly by optimizing it for single CPU efficiency. Inherent data

dependencies contribute to the imperfect scaling observed for eight processors. For IRREG, the

speedup was measured on up to 32 processors. Again, the parallel version scaled quite well,

with a factor of 30.0 on 32 processors. The speedup results obtained from initial attempts to

parallelize IRREG using loop-level parallelization resulted in almost no speedups. Data and

work distribution using specialized partitioners were extremely important for the parallel

performance of this code, which could not be achieved through directives for loop-level

parallelism.

Figure 6. Performance of OpenMP of LES and IRREG With the RlOk Chip.

11

4. Conclusions

In this report, experiments have been conducted to study the performance achieved through

shared-memory (OpenMP implementations) and message-passing (MPI implementations)

paradigms for six benchmark programs with realistic problem sizes run on a 12%processor

Origin 2000 with both the older RlOk and the newer R12k chips. Moreover, hardware-profiling

data were analyzed to understand the reasons for imperfect speedups of these codes.

These experiments lead to several interesting observations. A somewhat better performance

was obtained from MPI programs, as compared to the OpenMP. The main factor behind limited

scalability of the OpenMP versions was load imbalance. Only the outer loops were parallelized,

and, on large configurations, not all processors could be kept busy. The second most important

performance obstacle for OpenMP versions was the cost of remote references. False sharing and

synchronization costs were insignificant for the programs in this benchmark set.

The MPI versions demonstrated excellent load balance, with parallelism obtained through

domain decomposition. The main factor in the limited scalability of MPI versions was

communication costs. The MPI codes’ communication costs are indeed higher as shown by

VAMPIR TRACE data. This experience in developing parallel versions of two irregular CFD

codes found that the SPMD style parallelization facility of Openh4P enabled easy and efficient

parallelization of these applications.

This study concluded that programmers need to concentrate on achieving good work

distribution while optimizing the performance of OpenMP versions, and they need to concentrate

on improving communication performance while optimizing the performance of MPI versions.

These conclusions are applicable only to the programs that have similar features to the

benchmark programs studied here.

12

5. References

1.

-.

2.

3.

4.

5.

Nikolopoulos, D. S., and T. S. Papatheodorou. “A Comparison of MPI, SHMEM and
Cache-Coherent Shared Address Space Programming Models on the SGI Origin 2000.”
International Conference on Supercomputing, June 1999.

Bailey, D., T. Harris, W. Saphir, R. vander Wijngaart, A. Woo, and M. Yarrow. “NAS
Parallel Benchmarks 2.0.” Technical Report NAS-95-020, NASA Ames Research Center.

Numerical Aerodynamic Simulation Program. www.nas.nasa.gov/cgi-bin/softwave/start.
NASA Ames Research Center, 1999.

Wang, w. P. “Coupled Compressible and Incompressible Finite Volume Formulations of
the Large Eddy Simulation of Turbulent Flows With and Without Heat Transfer.” PhD
thesis, Iowa State University, 1995.

Das, R., D. J. Mavriplis, J. Saltz, S. Gupta, and R. Ponnusamy. “The Design and
Implementation of a Parallel Unstructured Euler Solver Using Software Primitives.” AZAA
Journal, vol. 32, no. 3, pp. 489-496, March 1994.

13

. I

14

NO. OF
COPIES

2

ORGANIZATION

DEFENSE TECHNICAL
INFORMATION CENTER
DTIC DDA
8725 JOHN J KINGMAN RD
STE 0944
FI’ BELVOIR VA 2206062 18

HQDA
DAMOFDT
400 ARMY PENTAGON
WASHINGTON DC 203 lo-0460

OSD
OUSD(A&T)/ODDDR&.E(R)
RJTREW
THE PENTAGON
WASHJNGTON DC 20301-7100

DPTY CG FOR RDA
us ARMYMATERIEL CMD
AMCRDA
5001 EISENHOWER AVE
ALEXANDRIA VA 22333-0001

INST FOR ADVNCD TCHNLGY
THE UNIV OF TEXAS AT AUSTIN
PO BOX 202797
AUSTIN TX 78720-2797

DARPA
B KASPAR
3701 N FAIRFAX DR
ARLINGTON VA 22203-1714

NAVAL SURFACE WARFARE CTR
CODE B07 J PENNELLA
17320 DAHLGREN RD
BLDG 1470 RM 1101
DAHLGREN VA 22448-5 100

US MILITARY ACADEMY
MATH SC1 CTR OF EXCELLENCE
MADNMATH
MAJ HUBER
THAYERHALL
WEST POINT NY 10996-1786

I

4

ORGANJZATION

DIRECTOR
US ARMY RESEARCH LAB
AMSRL D
DRSMITH
28ooPOWDERMILLRD
ADELPHI MD 20783-l 197

DIRECTOR
US ARMY RESEARCH LAB
AMSRL DD
2800 POWDER MJLL RD
ADELPHI MD 20783-1197

DIRECTOR
US ARMY RESEARCH LAB
AMSRL CI AIR (RECORDS MGMT)
2800 POWDER MILL RD
ADELPHI MD 20783-l 145

DIRECTOR
US ARMY RESEARCH LAB
AMSRL CI LL
2800 POWDER MILL RD
ADELPHI MD 20783-l 145

DIRECTOR
US ARMY RESEARCH LAB
AMSRL CI AP
2800 POWDER MILL RD
ADELPHI MD 20783-l 197

ABERDEEN PROVING GROUND

DIR USARL
AMSRL CI LP (BLDG 305)

15

NO. OF
COPIES ORGANIZATION

18 DIRECTOR
US ARMY RESEARCH LAB
AMSRL CI

NRADHAKRISHNAN
AMSRL CI CT

A CELMI@
AMSRL cs TT

J POLK
AMSRL CI H

W STUREK

c NIE?zTB1cz
P SATYA NARAYANA

AMSRL CI s

AMARK
AMSRL CI HA

C ZOLTANI (4 CPS)

D HISLEY
D PRESSEL
R NAMBURU

AMSRLWMB
A HORST
E SCHMDT

AMSRL WM BC
P PLOSTINS
H EDGE

16

Benchmarks of Realistic Pr

ltani, Punyam Satya-narayana, and Dixie Hisley

REPORT NUMBER

U.S. Army Research Laboratory
ATI’N: AMSRL-CI-HC
Aberdeen Proving Ground, MD 210055067

3. SPONSORlNWMONlTORING AGENCY NAMES(S) AND ADDRESS@) lO.SPONSORlNG/MONlTORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DlSTRlBUTlON/AVAllABlLlTY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution is unlimited.

13. ABSTRACTfMaximum 200 words)

Six application benchmarks, including four numerical aerodynamic simulation (NAS) codes, provided by H. Jin ana
1. Wu, were previously parallelixed using OpenMP and message-passing interface (MPI) and run on a 128-processor
Silicon Graphics Inc. (SGI) Origin 2000. Detailed profile data were collected to understand the factors causing
.mperfect scalability. ‘Ihe results show that load imbalance and cost of remote accesses are the main factors in limited
speedup of the OpenhIP versions, whereas communication costs are the single major factor in the performance of the
UP1 versions.

i4. SUBJECT TERMS 15. NUMBER OF PAGES

benchmarking, parallel processing, OpenMP 22
16. PRICE CODE

17. SECURlTY CLASSlflCATlON 18. SECURITY CLASSlflCATlON 19. SECURlTY CLASSlFlCATlON 20. LIMITATION OF ABSTRACT

OF REPORT OF THIS PAGE OF ABSTRACT

UNCLASSIFIED UNCLASSIPIED UNCLASSIFIED UL
NSN 7540-01-280-5500

17
Standard Form 298 (Rev. 2-99)
Prescribed by ANSI Std. 23418 293-l 02

bTlXVTIONALLY LEFT BLANK.

18

.

.

USER EVALUATION SHEET/CHANGE OF ADDRESS

This Laboratory undertakes a continuing effort to improve the quality of the reports it publishes. Your comments/auswers to
the items/questions below will aid us iu our efforts.

1. ARL Report Number/Author ARL-TR-2324 (Zoltani) Date of Report September 2000

2. Date Report Received

3. Does this report satisfy a need? (Comment on purpose, related project, or other area of interest for which the report will be

used.)

4. Specifically, how is the report being used? (lnforrnatiou source, design data, procedure, source of ideas, etc.)

5. Has the information in this report led to any quantitative savings as far as man-hours or dollars saved, operating costs

avoided, or efficiencies achieved, etc? If so, please elaborate.

6. General Comnent.s. What do you think should be changed to improve future reports? (Indicate changes to orgmization,

technical content, format, etc.)

CURRENT
ADDRESS

Organization

Name

Street or P.O. Box No.

E-mail Name

City, State, Zip Code

7. If indicating a Change of Address or Address Correction, please provide the Current or Correct address above and the Old

or Iucorrect address below.

OLD
ADDRESS

Organization

Name ~-

Street or P.O. Box No.

City, State, Zip Code

(Remove this sheet, fold as iudicated, tape closed, and mail.)
(DO NOT STAPLE)

